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A Poisson Process is a model for a series of discrete events (i.e. jumps) where the average time between events is
known, but the exact timing of events is random. The Poisson distribution is used to calculate the probability that
k events occur over the time interval [0, t] given that events are independent and occur at a constant rate over a
given period of time. The time between each jump is random and exponentially-distributed. In this white paper we
will build a model to calculate stock price via a Poisson Process. To that end we will work through the following
hypothetical problem...

Our Hypothetical Problem

We are tasked with building a model to forecast ABC Company stock price given the following go-forward model
assumptions...

Table 1: Go-Forward Model Assumptions

Symbol Description Value

S0 Stock price at time zero ($) 10.00
φ Expected rate of drift (%) 5.00
ω Jump size mean (%) 2.50
υ Jump size volatility (%) 6.00
λ Average number of annual jumps (#) 4.00
t Time in years (#) 3.00

Our task is to answer the following questions...

Question 1: What is random stock price at the end of year 3 given that there were k = 10 jumps drawn from a
Poisson distribution and y = 0.65 drawn from a normal distribution.

Question 2: What is expected unconditional stock price at the end of year 3?

Question 3: Prove your answer to Question 2 above via numerical integration.

Jump Probabilities

We will define the random variable τ to be the arrival time of the next jump, the variable ω to be jump size, and
the variable λ to be jump intensity, which is the average number of jumps per unit of time. Assume that we are
standing at time zero and want to find the probability that the next jump arrives over time time interval [t, t+ δt].
Given that the number of jumps over the time interval [0, t] is Poisson-distributed and the time between jumps
is Exponentially-distributed then from the perspective of time zero the equation for the probability that the next
jump arrives at time t is... [1]

P

[
t < τ ≤ t+ δt

]
= λExp

{
− λ t

}
δt (1)

Using Equation (1) above and Appendix Equation (22) below from the perspective of time zero the equation for
the probability that the next jump arrives over the time interval [0, t] is...

P

[
τ ≤ t

]
=

t∫
0

λExp

{
− λ t

}
δt = 1− Exp

{
− λ t

}
(2)
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Using Equation (2) above from the perspective of time zero the equation for the probability that no jumps arrive
over the time interval [0, t] is...

P

[
τ > t

]
= 1− P

[
τ ≤ t

]
= 1−

(
1− Exp

{
− λ t

})
= Exp

{
− λ t

}
(3)

Using Equations (1) and (3) above from the perspective of time zero the conditional probability that the next jump
will arrive at time t given that a jump did not arrive prior to time t is...

P

[
t < τ ≤ t+ δt

∣∣∣∣ τ > t

]
= λExp

{
− λ t

}
δt

/
Exp

{
− λ t

}
= λ δt (4)

Important: Note that Equation (4) above states that the probability that a jump will occur over any time interval
[t, t+ δt] is always λ δt and is not a function of the length of time interval [0, t], which is the length of time that we
have already waited for the next jump to occur. The Exponential distribution is therefore memoryless, which for
modeling purposes will prove to be a beneficial mathematical property.

As noted above the number of jumps realized over the time interval [0, t] is Poisson-distributed. The equa-
tion for the probability of k jumps over the time interval [0, t] is... [2]

Prob

[
k

]
=

(λ t)k

k!
Exp

{
− λ t

}
(5)

Conditional Stock Price

We will define the variable Ji to be the i’th jump over the time interval [0, t], the variable φ to be the rate of
drift, the variable ω to be jump size mean, the variable υ to be jump size volatility, and the variable yi to be a
normally-distributed random variable with mean zero and variance one. The equation for random jump size is..

Ji =

(
1 + ω

)
Exp

{
− 1

2
υ2 + v yi

}
...where... yi ∼ N

[
0, 1

]
(6)

Note that we can rewrite Equation (6) above as...

Ji = Exp

{
ln

(
1 + ω

)}
Exp

{
− 1

2
υ2 + v yi

}
= Exp

{
ln

(
1 + ω

)
− 1

2
υ2 + v yi

}
(7)

We will define the variable S(k)t to be conditional stock price at time t (stock price conditioned on k number of
jumps). Using Equations (6) and (7) above the equation for conditional stock price is...

S(k)t = S0 Exp

{
φ t

} k∏
i=1

Ji

= S0 Exp

{
φ t

} k∏
i=1

Exp

{
ln

(
1 + ω

)
− 1

2
υ2 + v yi

}

= S0 Exp

{
φ t

}
Exp

{
k ln

(
1 + ω

)
− k 1

2
υ2 + v

k∑
i=1

yi

}
(8)

If each normally-distributed random variable yi in Equation (8) above is independent with mean m and variance v
then the following equation holds... [3]

E
[ k∑

i=1

yi

]
= km+

√
k v y ...where... y ∼ N

[
m, v

]
(9)

Per Equation (6) above the mean and variance of each random variable yi is zero and one, respectively. We can
therefore rewrite Equation (9) above as...

E
[ k∑

i=1

yi

]
= k × 0 +

√
k × 1× y =

√
k y ...where... y ∼ N

[
0, 1

]
...because... m = 0 ...and... v = 1 (10)
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Using Equations (9) and (10) above we can rewrite conditional stock price Equation (8) above as...

S(k)t = S0 Exp

{
φ t+ k ln(1 + ω)− k 1

2
υ2 + v

√
k y

}
...where... y ∼ N

[
0, 1

]
(11)

Using conditional stock price Equation (11) above and noting that the number of jumps k is given (i.e. not random)
then the equation for expected conditional stock price at time t is...

E
[
S(k)t

]
= E

[
S0 Exp

{
φ t+k ln(1+ω)−k 1

2
υ2+v

√
k y

}]
= S0 Exp

{
φ t+k ln(1+ω)

}
E
[
Exp

{
−k 1

2
υ2+v

√
k y

}]
(12)

We will define the function f(k) to be the following normally-distributed random variable...

f(k) = −k 1

2
υ2 + v

√
k y ...where... f(k) ∼ N

[
− k 1

2
υ2, k υ2

]
...when... y ∼ N

[
0, 1

]
(13)

Given that the function f(k) in Equation (13) above is normally-distributed then the exponential of f(k) is
lognormally-distributed. The equation for the expected value of the exponential of f(k) is...

E
[
Exp

{
f(k)

}]
= Exp

{
mean +

1

2
variance

}
= Exp

{
− k 1

2
υ2 +

1

2
k υ2

}
= Exp

{
0

}
= 1 (14)

Using Equations (13) and (14) above we can rewrite Equation (12) above as...

E
[
S(k)t

]
= S0 Exp

{
φ t+ k ln(1 + ω)

}
= S0 Exp

{
φ t

}(
1 + ω

)k

(15)

Unconditional Stock Price

Using Equation (5) above the equation for expected unconditional stock price is...

E
[
St

]
=

∞∑
k=0

(λ t)k

k!
Exp

{
− λ t

}
E
[
S(k)t

]
(16)

Using Equation (15) above we can rewrite Equation (16) above is...

E
[
St

]
=

∞∑
k=0

(λ t)k

k!
Exp

{
− λ t

}
S0 Exp

{
φ t

}(
1 + ω

)k

= S0 Exp

{
φ t

} ∞∑
k=0

(λ t)k

k!
Exp

{
− λ t

}(
1 + ω

)k

= S0 Exp

{
φ t

} ∞∑
k=0

((1 + ω)λ t)k

k!
Exp

{
− λ t

}
(17)

Note that the solution to the following series is...

given that...

∞∑
k=0

zk

k!
= Exp

{
z

}
...then...

∞∑
k=0

((1 + ω)λ t)k

k!
= Exp

{
(1 + ω)λ t

}
(18)

Using Equation (18) above the solution to Equation (17) above is...

E
[
St

]
= S0 Exp

{
φ t

}
Exp

{
(1 + ω)λ t

}
Exp

{
− λ t

}
= S0 Exp

{
φ t+ ω λ t

}
(19)

The Answers To Our Hypothetical Problem

Question 1: What is random stock price at the end of year 3 given that there were k = 10 jumps drawn from a
Poisson distribution and y = 0.65 drawn from a normal distribution.
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Using Equation (11) above and the data in Table 1 above the answer to the question is...

S(10)3 = 10.00× Exp

{
0.05× 3 + 10× ln(1 + 0.025)− 10× 1

2
× 0.062 + 0.06×

√
10× 0.65

}
= 16.52 (20)

Question 2: What is expected unconditional stock price at the end of year 3?

Using Equation (19) above and the data in Table 1 above the answer to the question is...

E
[
S3

]
= 10.00× Exp

{
(0.05 + 0.025× 4)× 3

}
= 15.68 (21)

Question 3: Prove your answer to Question 2 above via numerical integration.

Using Poisson probability Equation (5) above and expected conditional stock price Equation (15) above the
answer to Question 2 above via numerical integration is...

Jumps Probability Stock Price Wt Price

0 0.00001 11.62 0.00007
1 0.00007 11.91 0.00088
2 0.00044 12.21 0.00540
3 0.00177 12.51 0.02214
4 0.00531 12.82 0.06808
5 0.01274 13.15 0.16748
6 0.02548 13.47 0.34333
7 0.04368 13.81 0.60328
8 0.06552 14.16 0.92754
9 0.08736 14.51 1.26763
10 0.10484 14.87 1.55919
11 0.11437 15.24 1.74346
12 0.11437 15.63 1.78704
13 0.10557 16.02 1.69082
14 0.09049 16.42 1.48550
15 0.07239 16.83 1.21811
16 0.05429 17.25 0.93642
17 0.03832 17.68 0.67753
18 0.02555 18.12 0.46298
19 0.01614 18.57 0.29972
20 0.00968 19.04 0.18433
21 0.00553 19.51 0.10796
22 0.00302 20.00 0.06036
23 0.00157 20.50 0.03228
24 0.00079 21.01 0.01654
25 0.00038 21.54 0.00814
26 0.00017 22.08 0.00385
27 0.00008 22.63 0.00175
28 0.00003 23.20 0.00077
29 0.00001 23.78 0.00033
30 0.00001 24.37 0.00013

Total 1.00000 – 15.68304
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Appendix

A. The solution to the following integral is...

t∫
0

λExp

{
− λ t

}
δt = −Exp

{
− λ t

}[t
0

= −
(

Exp

{
− λ t

}
− 1

)
= 1− Exp

{
− λ t

}
(22)
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